Wir nutzen Cookies, um Ihnen eine optimale Nutzung dieser Webseite zu ermöglichen. Mehr Informationen finden Sie im Datenschutzhinweis. Wir nehmen an, dass Sie damit einverstanden sind, falls Sie diese Webseite weiter besuchen.

Ihre Cookie-Einstellungen
Ihre Einstellungen wurden aktualisiert.
Damit die Änderungen wirksam werden, löschen Sie bitte Ihre Browser-Cookies und den Cache und laden dann die Seite neu.

Werk #7445: Historic data views and painters for capacity management

KomponenteReporting & Availability
TitelHistoric data views and painters for capacity management
Datum2019-07-11 17:47:10
Checkmk EditionCheckmk Enterprise Edition (CEE)
Checkmk Version1.6.0b4,1.7.0i1
LevelProminent Change
KlasseNew Feature
KompatibilitätKompatibel - benötigt kein manuelles Eingreifen

Capacity management allows you to work with the service metrics historical data. When configuring a view you can select for a column the "Service Historic Metrics" option from the drop-down menu, available for the "All hosts" and "All services" data-sources.

This customizable painter allows you to select, which service metric you want to analyze, over which time range should data be recovered from your RRD database, how data is to be consolidated and aggregated. Finally, you need to label this column to your best convenience.

Some ideas you might want to consider when creating your views:

List all your hosts Peak CPU utilization, over the last week, and also last month. Maybe you want also to create a new column corresponding to the to the times a new version of your software was deployed. Time ranges are completely flexible, and you can keep adding columns for any time window you prefer.

Analyze over the same time window, the peak, average and minimum CPU utilization of all your hosts over the last week or last month.

You can also get data from different services at the same time. For example showing CPU utilization, used memory and disk IO averaged over the last week.

One last note. Because you will be querying from the RRD data of many hosts at the same time, query time will increase linearly with the volume of data you are processing.